Free Objects and Tensor Products of Modules over a Commutative Ring

نویسنده

  • RANKEYA DATTA
چکیده

If you have taken a standard abstract algebra course, then you have probably heard of free groups. But, most such courses do not introduce the reader to the language of category theory, which unifies the notion of a free object. In the present lecture, we will define a free group categorically, and then go on to define a free module over a commutative ring, and hence, a free abelian group (which is just a Z–module). For present purposes, we will assume that free groups exist (if you are curious, just pick up any standard abstract algebra textbook and take a look at the construction of a free group).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy projective modules and tensor products in fuzzy module categories

Let $R$ be a commutative ring. We write $mbox{Hom}(mu_A, nu_B)$ for the set of all fuzzy $R$-morphisms from $mu_A$ to $nu_B$, where $mu_A$ and $nu_B$ are two fuzzy $R$-modules. We make$mbox{Hom}(mu_A, nu_B)$ into fuzzy $R$-module by redefining a function $alpha:mbox{Hom}(mu_A, nu_B)longrightarrow [0,1]$. We study the properties of the functor $mbox{Hom}(mu_A,-):FRmbox{-Mod}rightarrow FRmbox{-Mo...

متن کامل

Uniformly Secondary Modules over Commutative Ring

In [2] the notion of “uniformly ideal” was introduced and developed the basic theory. In this article we introduce and advance a theory which, in a sense, dual to that i.e, the notion of “uniformly secondary module”.

متن کامل

Adjunctions between Hom and Tensor as endofunctors of (bi-) module category of comodule algebras over a quasi-Hopf algebra.

For a Hopf algebra H over a commutative ring k and a left H-module V, the tensor endofunctors V k - and - kV are left adjoint to some kinds of  Hom-endofunctors of _HM. The units and counits of these adjunctions are formally trivial as in the classical case.The category of (bi-) modules over a quasi-Hopf algebra is monoidal and some generalized versions of  Hom-tensor relations have been st...

متن کامل

NONNIL-NOETHERIAN MODULES OVER COMMUTATIVE RINGS

In this paper we introduce a new class of modules which is closely related to the class of Noetherian modules. Let $R$ be a commutative ring with identity and let $M$ be an $R$-module such that $Nil(M)$ is a divided prime submodule of $M$. $M$ is called a Nonnil-Noetherian $R$-module if every nonnil submodule of $M$ is finitely generated. We prove that many of the properties of Noetherian modul...

متن کامل

Twisted rings and moduli stacks of “fat” point modules in non-commutative projective geometry

The Hilbert scheme of point modules was introduced by Artin-Tate-Van den Bergh to study non-commutative graded algebras. The key tool is the construction of a map from the algebra to a twisted ring on this Hilbert scheme. In this paper, we study moduli stacks of more general “fat” point modules, and show that there is a similar map to a twisted ring associated to the stack. This is used to prov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011